kneedle: Knee/Elbow Point Detection¶
Description¶
Finds the most significant knee/elbow using the Kneedle algorithm with exponential smoothing.
Usage¶
kneedle_increasing(x, convex = TRUE, dt = 0.01)
Arguments¶
|
data vector (increasing) |
|
whether the data in |
|
controls the smoothing parameter \(\alpha = 1-\exp(-dt)\) of the exponential moving average, \(y_i = \alpha x_i + (1-\alpha) x_{i-1}\), \(y_1 = x_1\) |
Value¶
Returns the index of the knee/elbow point; 1 if not found.
References¶
V. Satopaa, J. Albrecht, D. Irwin, B. Raghavan, Finding a “Kneedle” in a haystack: Detecting knee points in system behavior, In: 31st Intl. Conf. Distributed Computing Systems Workshops, 2011, 166-171, doi:10.1109/ICDCSW.2011.20
See Also¶
The official online manual of deadwood at https://deadwood.gagolewski.com/